3.322 \(\int \frac{\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=131 \[ -\frac{2 \left (a^3 B-2 a b^2 B+A b^3\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac{a (A b-a B) \tan (c+d x)}{b d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac{B \tanh ^{-1}(\sin (c+d x))}{b^2 d} \]

[Out]

(B*ArcTanh[Sin[c + d*x]])/(b^2*d) - (2*(A*b^3 + a^3*B - 2*a*b^2*B)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt
[a + b]])/((a - b)^(3/2)*b^2*(a + b)^(3/2)*d) + (a*(A*b - a*B)*Tan[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Sec[c + d
*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.300546, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {4009, 3998, 3770, 3831, 2659, 208} \[ -\frac{2 \left (a^3 B-2 a b^2 B+A b^3\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac{a (A b-a B) \tan (c+d x)}{b d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac{B \tanh ^{-1}(\sin (c+d x))}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^2,x]

[Out]

(B*ArcTanh[Sin[c + d*x]])/(b^2*d) - (2*(A*b^3 + a^3*B - 2*a*b^2*B)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt
[a + b]])/((a - b)^(3/2)*b^2*(a + b)^(3/2)*d) + (a*(A*b - a*B)*Tan[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Sec[c + d
*x]))

Rule 4009

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(a*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)), x]
- Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(A*b - a*B)*(m + 1) - (
a*A*b*(m + 2) - B*(a^2 + b^2*(m + 1)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a
*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3998

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^2} \, dx &=\frac{a (A b-a B) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{\int \frac{\sec (c+d x) \left (-b (A b-a B)+\left (a^2-b^2\right ) B \sec (c+d x)\right )}{a+b \sec (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=\frac{a (A b-a B) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{B \int \sec (c+d x) \, dx}{b^2}-\frac{\left (A b^3+a \left (a^2-2 b^2\right ) B\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=\frac{B \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{a (A b-a B) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\left (A b^3+a \left (a^2-2 b^2\right ) B\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{b^3 \left (a^2-b^2\right )}\\ &=\frac{B \tanh ^{-1}(\sin (c+d x))}{b^2 d}+\frac{a (A b-a B) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\left (2 \left (A b^3+a \left (a^2-2 b^2\right ) B\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^3 \left (a^2-b^2\right ) d}\\ &=\frac{B \tanh ^{-1}(\sin (c+d x))}{b^2 d}-\frac{2 \left (A b^3+a^3 B-2 a b^2 B\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} b^2 (a+b)^{3/2} d}+\frac{a (A b-a B) \tan (c+d x)}{b \left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.697127, size = 191, normalized size = 1.46 \[ \frac{\cos (c+d x) (A+B \sec (c+d x)) \left (\frac{2 \left (a B \left (a^2-2 b^2\right )+A b^3\right ) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{3/2}}+\frac{a b (a B-A b) \sin (c+d x)}{(b-a) (a+b) (a \cos (c+d x)+b)}-B \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+B \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )}{b^2 d (A \cos (c+d x)+B)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^2,x]

[Out]

(Cos[c + d*x]*(A + B*Sec[c + d*x])*((2*(A*b^3 + a*(a^2 - 2*b^2)*B)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^
2 - b^2]])/(a^2 - b^2)^(3/2) - B*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + B*Log[Cos[(c + d*x)/2] + Sin[(c +
d*x)/2]] + (a*b*(-(A*b) + a*B)*Sin[c + d*x])/((-a + b)*(a + b)*(b + a*Cos[c + d*x]))))/(b^2*d*(B + A*Cos[c + d
*x]))

________________________________________________________________________________________

Maple [B]  time = 0.079, size = 350, normalized size = 2.7 \begin{align*} -2\,{\frac{a\tan \left ( 1/2\,dx+c/2 \right ) A}{d \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) }}+2\,{\frac{{a}^{2}\tan \left ( 1/2\,dx+c/2 \right ) B}{db \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) }}-2\,{\frac{Ab}{d \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{B{a}^{3}}{d{b}^{2} \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+4\,{\frac{Ba}{d \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+{\frac{B}{d{b}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{B}{d{b}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x)

[Out]

-2/d*a/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)*A+2/d/b*a^2/(a^2-b^2)*
tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)*B-2/d*b/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)
*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*A-2/d*a^3/b^2/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*arctanh((
a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*B+4/d/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1
/2*c)/((a+b)*(a-b))^(1/2))*B*a+1/d/b^2*ln(tan(1/2*d*x+1/2*c)+1)*B-1/d/b^2*ln(tan(1/2*d*x+1/2*c)-1)*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 9.57901, size = 1551, normalized size = 11.84 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*((B*a^3*b - 2*B*a*b^3 + A*b^4 + (B*a^4 - 2*B*a^2*b^2 + A*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*
cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^
2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) + (B*a^4*b - 2*B*a^2*b^3 + B*b^5 + (B*a^5 - 2*B*a^3*b^2 +
B*a*b^4)*cos(d*x + c))*log(sin(d*x + c) + 1) - (B*a^4*b - 2*B*a^2*b^3 + B*b^5 + (B*a^5 - 2*B*a^3*b^2 + B*a*b^4
)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(B*a^4*b - A*a^3*b^2 - B*a^2*b^3 + A*a*b^4)*sin(d*x + c))/((a^5*b^2
 - 2*a^3*b^4 + a*b^6)*d*cos(d*x + c) + (a^4*b^3 - 2*a^2*b^5 + b^7)*d), -1/2*(2*(B*a^3*b - 2*B*a*b^3 + A*b^4 +
(B*a^4 - 2*B*a^2*b^2 + A*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/(
(a^2 - b^2)*sin(d*x + c))) - (B*a^4*b - 2*B*a^2*b^3 + B*b^5 + (B*a^5 - 2*B*a^3*b^2 + B*a*b^4)*cos(d*x + c))*lo
g(sin(d*x + c) + 1) + (B*a^4*b - 2*B*a^2*b^3 + B*b^5 + (B*a^5 - 2*B*a^3*b^2 + B*a*b^4)*cos(d*x + c))*log(-sin(
d*x + c) + 1) + 2*(B*a^4*b - A*a^3*b^2 - B*a^2*b^3 + A*a*b^4)*sin(d*x + c))/((a^5*b^2 - 2*a^3*b^4 + a*b^6)*d*c
os(d*x + c) + (a^4*b^3 - 2*a^2*b^5 + b^7)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**2,x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)**2/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.26215, size = 312, normalized size = 2.38 \begin{align*} -\frac{\frac{2 \,{\left (B a^{3} - 2 \, B a b^{2} + A b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{2} b^{2} - b^{4}\right )} \sqrt{-a^{2} + b^{2}}} - \frac{B \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b^{2}} + \frac{B \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b^{2}} - \frac{2 \,{\left (B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (a^{2} b - b^{3}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a - b\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*(B*a^3 - 2*B*a*b^2 + A*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1
/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^2*b^2 - b^4)*sqrt(-a^2 + b^2)) - B*log(abs(tan(1/2*d*x
+ 1/2*c) + 1))/b^2 + B*log(abs(tan(1/2*d*x + 1/2*c) - 1))/b^2 - 2*(B*a^2*tan(1/2*d*x + 1/2*c) - A*a*b*tan(1/2*
d*x + 1/2*c))/((a^2*b - b^3)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)))/d